Effective Date: 06 December, 2000

Title: FLUOROMETRIC DETERMINATION OF CHLOROPHYLL A

Author:	Date:		
	Marie E. DeLorenzo		
Program Manager:	Michael H. Fulton	Date:	
Branch Chief:	Geoffrey I. Scott	Date:	

1.0 OBJECTIVE

Chlorophyll a is used to estimate phototrophic biomass. The purpose of this method is to quantify chlorophyll a concentration from water samples. This method was adapted from Glover and Morris (1979).

2.0 HEALTH AND SAFETY

Personnel should wear lab coats and chemical resistant gloves.

3.0 PERSONNEL/TRAINING/RESPONSIBILITIES

Personnel should not perform this method until training by experienced individuals is complete.

4.0 REQUIRED AND RECOMMENDED MATERIALS

20 mL plastic scintillation vials acetone magnesium carbonate (MgCO₃) deionized water glass fiber filters (Type GF/F, 25 mm diameter) filter apparatus filter forceps fluorometer (e.g. Sequoia-Turner Model 450)

Effective Date: 06 December, 2000

disposable, borosilicate glass test tubes for fluorometer Vortex mixer 1 and 10 mL pipettes/bulbs

5.0 PROCEDURE

5.1 Chlorophyll extraction

- \$ Sample volume required will vary, depending on the chlorophyll concentration in the water. For PFU samples, 10 mL is typically adequate.
- \$ Filter water sample onto glass fiber filter (Type GF/F, 25 mm diameter).
- \$ Just before all sample passes the filter, rinse the column with two separate aliquots (1.0 mL each) deionized water. Continue vacuum until all liquid is gone.
- \$ Release vacuum, disassemble filter tower apparatus, and remove filter with forceps.
- \$ Place filter face up on bottom of scintillation vial, add 1 mL MgCO₃ and freeze until analysis.
- \$ Samples should be kept in the dark for the rest of the procedure. To extract the samples, add 9 mL of acetone to each scintillation vial and shake well.
- \$ Refrigerate samples overnight in the dark at 4 EC , shake the samples the next day, and refrigerate overnight again.
- **\$** The next day, bring the samples to room temperature and read on a fluorometer.

5.2 Fluorometric measurement

5.2.1 Chlorophyll a

- \$ Before using the fluorometer for unknowns, a standard curve should be created with pure chlorophyll *a* extracts (available from Sigma).
- **AZ**ero@ each door opening of the fluorometer immediately prior to use, using a tube of 90% acetone.

Effective Date: 06 December, 2000

- \$ Decant the chlorophyll extract from the scintillation vial into the fluorometer test tube. Care should be taken not to transfer particulates from the filter into the tube.
- \$ Wipe off the sides of the test tube with a Kim Wipe and place the test tube in the fluorometer.
- \$ Record the fluorescence units, door setting and gain setting.
- \$ Samples that are too concentrated may be diluted with 90% acetone.
- \$ A new test tube should be used for each sample.

5.2.2 Phaeo-pigments

This extra step is performed to determine and correct for the concentration of phaeo-pigments (chlorophyll degradation products) in the samples. It is usually not necessary with the GF/F filtering technique, but is provided here for those using other collection methods.

- \$ After the first reading is taken on the fluorometer, remove the tube and add 2 drops of 5% v/v hydrochloric acid.
- \$ Mix contents of tube with a vortex mixer.
- \$ Take a second reading 30-60 seconds later, after a stable value is reached.

5.3 Calculations

Chlorophyll a (µg/mL)= (door factor*(chlorophyll fluorescence reading-phaeo-pigment reading)*gain correction*acetone volume)/volume filtered*gain.

6.0 QUALITY CONTROL/QUALITY ASSURANCE

A minimum of three replicates per site or treatment is recommended. It is important that each sample is well-mixed prior to filtration and that the samples are kept in the dark after collection onto the filters.

7.0 REFERENCES

Glover H.E. and Morris I. 1979. Photosynthetic carboxylating enzymes in marine phytoplankton. Limnol Oceanogr 23:510-519